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ABSTRACT Euclidian metric so to perform Euclidian calculations from

This paper uses the opportunity given by the formalisnﬁ(l3B IS an ap;pt;ox[{m?ﬁlon. V\f" propose to etncodktha I\t/lh
of geometric algebras to perform colour image processin%O ourimaget by Its three colour components on the three

by describing one colour with a geometric vector in the 3DVector parts of a multivector iffs : 335 535" f1(x,y)er +
space. The paper proposes to manipulate colours in the RGB(X,y)ex + fa(x,y)es. fi(x,y), fa(x,y) and f3(x,y) are the
space where properties such as saturation or luminance cared, green and blue components of the pixel at coordinates
be described with the help of geometric operations. These,y).

geometric operations are applied on vectors encodegsin

A spatial filtering operation on images with this model leads1.2 Products
to a colour gradient that can be used for example for colourproducts in geometric algebras are the elementary opera-

edge detection. tions:
e Outer Product: This product is also called exterior pro-
1. GEOMETRIC ALGEBRA duct, denoted by.. It generates the subspaces defined by

linearly independent combinations of blades. For exam-
_ _ _ _ ple, multiplying two linearly independent vectors gives a
The%, geometric algebra is thé'2limensional vector space bivector. If this bivector is again multiplied by a linearly

1.1 Introduction

extgnded_with the geometric product from th€ which is a ~independent vector, the result is the pseudo-scalar.
n-dimensional vector space of real numbers. The geometrice Inner Product: This product also called interior product
algebra manipulates entities called multivectors thattlaee or left contraction, denoted by is used to give the notion

extension of vectors to higher dimension. They are graded- of orthogonality between two multivectors [2]. LAt be
algebras, that is to say scalars are represented in geometri g a-vector andB be ab-vector, thenA |B is a (b — a)-
algebra by zero-dimensional quantities (O-graded) fomexa  vector subspace d8 and orthogonal to subspade If
ple. Vectors are one-dimensional directed quantitieo(als b < athenA|B = 0. Two vectors are also orthogonal if
represented by arrows), so 1-graded. In geometric algebra, their inner product is null.

there are grade-2 entities termed bivectors which are plang Geometric Product: This product is an associative law

segments (for example circles) endowed with orientation. | anq distributive over the addition of multivectors. In ge-
general &-dimensional entity is known askavector. For an neral, the result of the geometric product is a multivector.
overview on geometric algebras see [3, 6, 7] for example. If used on 1-vectora andb, this is the sum of the inner

In this paper we limit the focus dr algebra because we  and outer productab= ab+aAb. Note also that the
use colour as vectors in the 3D Space. In this algebra the ba- geometric product is not commutative.

Sis (€p, €1, €2, €3, €23, €31, €12, €123) includes a scalar, vectors, o gealar Product: This product also called dot product, de-
bivectors and a trivector (3-graded) als_o called pseud;tasc noted by:, is used to define distances and modulus.
The vectors are the same as those in the basiey, e3)
of #3. The bivectorseys, €31 and e;» are the geometric 1.3 Definitions
product of two vectorseyes, ese; and eje; respectively. .
The remaining parts are the scagr= 1 and the trivector Let A be a multivector of. ~ ~
€123 = €162€3. Any multivector A = Agep + Asrer + Aoy + e The reversion ofA, denotedA is defined byA = (A)o+
Azes + Ap3ers + Az131 + A2 + Agoa103 € %5 is a linear (A)1— (A)2 — (A)3. Reversion is needed to define Norm
combination of the basis entities also called blades. The k- and Inverse.
grade part of a multivectoA is given from the grade op- e Norm or Modulus of a multivectoA is defined by the
erator (A)k. For instance here, the 2-grade part &fis scalar product ofA by its reversion :|A| = A-A=
(A)2 = Az23ex3+ Az1€31 + Ar2€12. .~

Colour image processing can be done using different (AA)o
colour spaces. Most devices as screens for example use tbet now B in 43 be the geometric product of 1-vectors
RGB space to display colours. In order to avoid numerign € N), B is called a versor.
approximations inescapable from conversions between dif-e Every versor has an inverse which means for evBry
ferent colour spaces, we choose to work directly in RGB.  there is aB* assertingBB ! = 1; the inverséB~! of
This colour space will be considered with an Euclidian met- B equals toB.
ric to allow geometric calculations. CIE L*a*b* colour sgac q BB’ ) ) ] .
respects the human characteristics to distinct colours wit ® Note that every multivector is not invertible.
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2. GEOMETRIC TRANSFORMATIONS formalism is also able to manipulate vectors in the 3D space
but has limits. With the definition of the convolution on a
%uaternionic colour image in [8, 10], he applied two specific
in the 3D space with the geometric transformations given bconjugate quaternionic filters on an image. This fulfilled an
he aluebra f i Fi . Yverage vector of every pixel in the filters neighbourhoed re
the alge ra_ ormalisne(. Figure 2 . flected with respect to the greyscale axis. This reflectia op

e Translation: Let,Vvz,\) € 43, thevy translation by, ration gives a comparison of the colour vectors in the neigh-

Since the colour information of an image is encoded in th
vectorial part of &3 multivector, we can manipulate a colour

is given by their sunv; = vy +3V2- o bourhood of the filters (dimension of filters isx33). The
e Projection: Let(v1,Vz,V) € 45, thevy projection oven, filtered image ¢f. Figure 2 is a greyscale image almost ev-
is given by v = (v ]v2)vy . erywhere, because in homogeneous regions the vector sum

of one pixel to its neighbours reflected by the grey axis has

- - . 3 - . .
* Rejection: Let(vy,v2,v,) € 43, the rejection o, with a low saturation. Saturation is the distance between a colou

. . . —1 . L
respect tor is given by :v, = (Vi AV2)V; ™ vector and the greyscale axis. This is the caseof uoz[
e Reflection: Let(vi,vo,V;) € %33 the reflectionv, of vy for instance in Figure 3 where the quaterniprrepresents
with respect tor, is given by :v; = V2V1V2_1. the greyscale axigj its conjugate angigspt the reflection of

gs with respect tqu [9]. However, if you compare pixels like
01 andg for example in Figure 3, you should detect a colour
edge as they are in colour opposition. Therefore, they ptese
a vector sum far from the grey axis. Edges are thus coloured
due to this high distance. The limit of this method is that
the filters can be applied horizontally from left to right and
from right to left for example but without giving the same re-
sults. In Figure 3, the vector sump+ (g is different from
the vector sung; + pde produced when the filters are ap-
plied from opposite side (ie. leftwise or rightwise). An edg
with the Sangwine method will be detected by full coloured
pixels in opposition to homogenous regions which will be
represented by grey pixels.

Figure 1: Basis geometric transformations from two%¥;

vectorsvy and vp : v is thev; translation by, ; v is the
projection ofvy onvy ; v, is the rejection of/; with respect
to v, andy; is the reflection of/, with respect tov,.

3. COLOUR GRADIENT

From the study of the geometric transformations seen before (@) (b)

with the vectors of43, we propose to manipulate the colours

of images as vector in the 3D colour space. Felsberg used ge=" \ .

ometric algebras to characterize the luminosity variation ~29€; (b) zoom on the hat edge of the (a) picture after applica-

greyscale images by a 2D analysis [5]. A first application oftion of Sangwine’s filters from right to left horizontally.

geometric algebras with colour images was given by Schlem- _

mer [11]. In his paper, Schlemmer decomposed images in the I this paper, we propose to detect edges by a colour gra-

LUV colour space and merged two gradients. The first one igient. The method of Sangwine gives us the starting point.

given by a Canny method on the luminosity part of the LUVIN fact, we have a map of every pixel reflected by the grey

colour space. The second gradient is calculated with the tw@Xis and compared to its neighbours. The more the vec-

chromatic part$) andV with a 2D gradient produced from tor result is far from the grey axis, the more it is far as

the vector field theory using the geometric algetfza We” fro_m its nelgh_bours. CO”VO'Uth_n prod_uct IS _defl_ned
We propose in this paper to use the formalisngfthat N [4] with geometric algebras. The filtered image is given

is to say to use the 3D information colour vectors, to performPy f'(X,y) = 3 3 1(11,72) f (X — 1), (y — T2))r (12, T2) with

a colour edge detection. In fact, in the homogenous regiongangwine’s generalized filters #:

of a natural colour image, pixels represented by vectors are

close to their neighbours in the colour space. A colour edge

Eigure 2: Sangwine edge detector result (a) original im-

can then be detected by a discontinuity in this neighbour- 1 [1 11 1 11 1
hood. Geometric manipulations on the colour vectors of i- | = NG 0 0 0|r= WG 01 01 01
mages can help us to detect such discontinuities. HogoH [

A first approach was given by Sangwine in [9]. In his
paper, Sangwine proposed to use the formalism of quater- We suggest to determine the distance of Sangwine com-
nions to encode the colour information of an image. Thigparison vector sum to the grey axis: its saturation. This
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Figure 4: Saturation gradient : pvii (resp. uvapu~1) is
the reflected vector of; (resp. v3) with respect to the grey
axis u; our comparison vector between andv; (resp. be-
tweenvsz andv,) gives the distanc® = |(VsumA 1) Y| of

Figure 3: Sangwine’s edge detector scheme p is the Sangwmesivector SUMkum = Vo + UVA L (Tesp. Vsum =
grey axis; uqufi (resp. ugsf) is the reflected vector af; Va4t HV3H )from the grey.aX|s_(orange arrows); An edge is
(resp.qs) with respect tqu; the comparison vector between detected by a h|glh saturation like the orange arrow between
01 andap (resp. betweens andqy) is given bydp + pogi  H @ndva + poi

(resp. g4 + UOsH); Q4 + UO3H is near the grey axis so the

colour seems grey bup + pqi [ is far from the grey axis so

Sangwine’s filter has detected an edge as this vector is mof@rial part where its norm is very small to keep the coordi-
coloured. nates where the colour vector is mere collinegut&Ve then

process a Sobel filtering on the scalar part to produce a lu-
minance gradient. Next, we apply the previous mask on this
gradient to keep only the needed luminance information. In
fact when a colour vector is quite collinear to the greyscale
S _ X is, the saturation gradient given by the previous method
the formula of the rejectionS= |(vA Y (cf. Figure &S : . 2 :
4). The same colour@i andvs can|(giveﬁi\3v% di|ﬁferent (?olour is not appropriate. Finally this is merged to.th.e saturation
véctorsv — Vo + vyl and v — Vs + Uvoll by the gradient in order to also detect greyscale variations. e se
Sangwinsg’rg method. Note thasturc?ur approach. which give%or example in Figure 5 that the method using the luminance
a saturation gradient, is independent from the path (Iséwi hformation merged to the maximum saturation gradient is

. . . . . more efficient as there are more details on the left parrot
gi EgRt\/lee)/\aLp)rﬂl_elcT E) |c(3nvo|>1\tz)tzglf‘llte_lr_iiissgﬁrglﬂsﬁnc head. There are as well big achromatic regions behind the
= sum = sump .

filtering is applied to the horizontal, vertical and both-dia parrots detected with this method that are not with the satu-

gonal directions by4s convolution product. The maximum ration gradient method only.

of these directional gradients is then selected to makethe fj oriIr?rlr? ggglg]ﬁgl/cepbrgggCtrgizgslgérﬁi tsﬂeg%?f?epa.ge%igrur al-
nal colour gradient filter by maximum saturation. This finalJ P e '

filtering operation is not linear only because the ”maximum”govl\gouurlSei?gfcﬂ'gggnthgssgme r%?/?omugtr'fag%rnfjgzobna;%éh;’n
operator interferes. . p g

. . . . saturation, we needed to add luminance information and that
As the method described before is a saturation gradient,;a why we chose to fill with the greyscale axis.

problem appears: discontinuities in colours are not just-sa As the perception of colour is linked to the Human Visual
ration ones. Indeed, two different colours can have the samgysiem, it may be difficult to compare results in colour im-
saturation; fortunately they can be disjoined by theireiff 556 hrocessing with greyscale quantitative evaluatiommet
ence of luminance. . ~ ods. We could have compared our results to colour images
To improve our algorithm we use the opportunity givensegmentation databases but the goal of this paper was more
by the embedding of the Geometric Algebra. In fact, apto show how using Geometric Algebra could help to perform
plying the geometric productf”(x,y) = f(x,y)u on every  a colour gradient. We can nevertheless compare our method
pixel of the original image gives us a geometric comparisoiisually to other ones in Figure 6. Di Zenzo method [12] is
of the pixels to the greyscale axis. Then the result of thissased on a vectorial approach (c). The marginal method (b) is
operation adds luminance information. It is the sum of twog fusion of three different gradients done on the three colou
parts: f(x,y) A p—+ f(x,y)Ju. The first part,f(x,y) A, is  channels of the image. It is quite effective on this picture.
bivectorial and allows to compare the geometry between thResults show that our method detects colour edges properly
colour vector angi. When this part is null for example, the ith the house image where walls, roof and sky are well sep-
colour vector is collinear to the greyscale axis. The secongrated (e). Because the luminance in (e) is considered, we
partf(x,y)|u, is a scalar, and the projection of the coloursee for instance the details of the window’s house, the drain
vector over the grey axis : its intensity. pipe and the bottom of the roof that do not appear on the
A boolean mask is produced by thresholding the bivecmaximum saturation approach (d). The Carron method (f)

distanceS is the norm of the rejection of the colour vector
sumv with respect to the grey axig. We then get it by
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Figure 5: Colour gradient examples : (a) original image ;
(b) colour gradient with a luminance adjustment; (c) thresh
olding on the colour gradient ; (d) thresholding on the maxi-
mum saturation gradient (without the modification of the fil-
ters).

is based on a hue marginal gradient but it is completed by
luminance and saturation gradients when hue is not enougf
[1].

The edges obtained by our approach (d and e) are muct
thicker than in all the other methods. The Carron approach
gives the best result but it is based on hue, luminance and
saturation variations whereas our method uses only the twa
latter. Our method gives about the same results than the Di
Zenzo one with thicker edges. As we work directly in the

distance between colours; we use a saturation distanca plus
luminance one when necessary. .

To conclude, we propose an original method based OFI
geometric algebra to detect colour edges. This formalis
allows to manipulate and to compare the colours as vecto
in the 3D space. This method gives a geometrical gradie
that can detect colour edges properly compared to alread
known approaches like Di Zenzo or Carron ones. It uses
RGB colour space but detects saturation and luminance varf'—
ations with geometrical operations allowed #y. As geo- 3]
metric algebras are not limited to three dimensions, amexte
sion to N-dimension from this work is possible. Multiband
images as those produced by satellite sensors for exangple ar
being studied to be processed by geometrical filtet,in [4]

The authors thank Poitou-Charentes Region board which
has funded this work.
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